1,314 research outputs found

    Testing the Master Constraint Programme for Loop Quantum Gravity II. Finite Dimensional Systems

    Full text link
    This is the second paper in our series of five in which we test the Master Constraint Programme for solving the Hamiltonian constraint in Loop Quantum Gravity. In this work we begin with the simplest examples: Finite dimensional models with a finite number of first or second class constraints, Abelean or non -- Abelean, with or without structure functions.Comment: 23 pages, no figure

    Testing the Master Constraint Programme for Loop Quantum Gravity III. SL(2,R) Models

    Full text link
    This is the third paper in our series of five in which we test the Master Constraint Programme for solving the Hamiltonian constraint in Loop Quantum Gravity. In this work we analyze models which, despite the fact that the phase space is finite dimensional, are much more complicated than in the second paper: These are systems with an SL(2,\Rl) gauge symmetry and the complications arise because non -- compact semisimple Lie groups are not amenable (have no finite translation invariant measure). This leads to severe obstacles in the refined algebraic quantization programme (group averaging) and we see a trace of that in the fact that the spectrum of the Master Constraint does not contain the point zero. However, the minimum of the spectrum is of order 2\hbar^2 which can be interpreted as a normal ordering constant arising from first class constraints (while second class systems lead to \hbar normal ordering constants). The physical Hilbert space can then be be obtained after subtracting this normal ordering correction.Comment: 33 pages, no figure

    Gauge Field Theory Coherent States (GCS) : II. Peakedness Properties

    Full text link
    In this article we apply the methods outlined in the previous paper of this series to the particular set of states obtained by choosing the complexifier to be a Laplace operator for each edge of a graph. The corresponding coherent state transform was introduced by Hall for one edge and generalized by Ashtekar, Lewandowski, Marolf, Mour\~ao and Thiemann to arbitrary, finite, piecewise analytic graphs. However, both of these works were incomplete with respect to the following two issues : (a) The focus was on the unitarity of the transform and left the properties of the corresponding coherent states themselves untouched. (b) While these states depend in some sense on complexified connections, it remained unclear what the complexification was in terms of the coordinates of the underlying real phase space. In this paper we resolve these issues, in particular, we prove that this family of states satisfies all the usual properties : i) Peakedness in the configuration, momentum and phase space (or Bargmann-Segal) representation, ii) Saturation of the unquenched Heisenberg uncertainty bound. iii) (Over)completeness. These states therefore comprise a candidate family for the semi-classical analysis of canonical quantum gravity and quantum gauge theory coupled to quantum gravity, enable error-controlled approximations and set a new starting point for {\it numerical canonical quantum general relativity and gauge theory}. The text is supplemented by an appendix which contains extensive graphics in order to give a feeling for the so far unknown peakedness properties of the states constructed.Comment: 70 pages, LATEX, 29 figure

    Gauge Field Theory Coherent States (GCS) : I. General Properties

    Full text link
    In this article we outline a rather general construction of diffeomorphism covariant coherent states for quantum gauge theories. By this we mean states ψ(A,E)\psi_{(A,E)}, labelled by a point (A,E) in the classical phase space, consisting of canonically conjugate pairs of connections A and electric fields E respectively, such that (a) they are eigenstates of a corresponding annihilation operator which is a generalization of A-iE smeared in a suitable way, (b) normal ordered polynomials of generalized annihilation and creation operators have the correct expectation value, (c) they saturate the Heisenberg uncertainty bound for the fluctuations of A^,E^\hat{A},\hat{E} and (d) they do not use any background structure for their definition, that is, they are diffeomorphism covariant. This is the first paper in a series of articles entitled ``Gauge Field Theory Coherent States (GCS)'' which aim at connecting non-perturbative quantum general relativity with the low energy physics of the standard model. In particular, coherent states enable us for the first time to take into account quantum metrics which are excited {\it everywhere} in an asymptotically flat spacetime manifold. The formalism introduced in this paper is immediately applicable also to lattice gauge theory in the presence of a (Minkowski) background structure on a possibly {\it infinite lattice}.Comment: 40 pages, LATEX, no figure

    The large cosmological constant approximation to classical and quantum gravity: model examples

    Get PDF
    We have recently introduced an approach for studying perturbatively classical and quantum canonical general relativity. The perturbative technique appears to preserve many of the attractive features of the non-perturbative quantization approach based on Ashtekar's new variables and spin networks. With this approach one can find perturbatively classical observables (quantities that have vanishing Poisson brackets with the constraints) and quantum states (states that are annihilated by the quantum constraints). The relative ease with which the technique appears to deal with these traditionally hard problems opens several questions about how relevant the results produced can possibly be. Among the questions is the issue of how useful are results for large values of the cosmological constant and how the approach can deal with several pathologies that are expected to be present in the canonical approach to quantum gravity. With the aim of clarifying these points, and to make our construction as explicit as possible, we study its application in several simple models. We consider Bianchi cosmologies, the asymmetric top, the coupled harmonic oscillators with constant energy density and a simple quantum mechanical system with two Hamiltonian constraints. We find that the technique satisfactorily deals with the pathologies of these models and offers promise for finding (at least some) results even for small values of the cosmological constant. Finally, we briefly sketch how the method would operate in the full four dimensional quantum general relativity case.Comment: 21 pages, RevTex, 2 figures with epsfi

    QSD VI : Quantum Poincar\'e Algebra and a Quantum Positivity of Energy Theorem for Canonical Quantum Gravity

    Full text link
    We quantize the generators of the little subgroup of the asymptotic Poincar\'e group of Lorentzian four-dimensional canonical quantum gravity in the continuum. In particular, the resulting ADM energy operator is densely defined on an appropriate Hilbert space, symmetric and essentially self-adjoint. Moreover, we prove a quantum analogue of the classical positivity of energy theorem due to Schoen and Yau. The proof uses a certain technical restriction on the space of states at spatial infinity which is suggested to us given the asymptotically flat structure available. The theorem demonstrates that several of the speculations regarding the stability of the theory, recently spelled out by Smolin, are false once a quantum version of the pre-assumptions underlying the classical positivity of energy theorem is imposed in the quantum theory as well. The quantum symmetry algebra corresponding to the generators of the little group faithfully represents the classical algebra.Comment: 24p, LATE

    Testing the Master Constraint Programme for Loop Quantum Gravity I. General Framework

    Full text link
    Recently the Master Constraint Programme for Loop Quantum Gravity (LQG) was proposed as a classically equivalent way to impose the infinite number of Wheeler -- DeWitt constraint equations in terms of a single Master Equation. While the proposal has some promising abstract features, it was until now barely tested in known models. In this series of five papers we fill this gap, thereby adding confidence to the proposal. We consider a wide range of models with increasingly more complicated constraint algebras, beginning with a finite dimensional, Abelean algebra of constraint operators which are linear in the momenta and ending with an infinite dimensional, non-Abelean algebra of constraint operators which closes with structure functions only and which are not even polynomial in the momenta. In all these models we apply the Master Constraint Programme successfully, however, the full flexibility of the method must be exploited in order to complete our task. This shows that the Master Constraint Programme has a wide range of applicability but that there are many, physically interesting subtleties that must be taken care of in doing so. In this first paper we prepare the analysis of our test models by outlining the general framework of the Master Constraint Programme. The models themselves will be studied in the remaining four papers. As a side result we develop the Direct Integral Decomposition (DID) for solving quantum constraints as an alternative to Refined Algebraic Quantization (RAQ).Comment: 42 pages, no figure

    Loop Quantum Cosmology III: Wheeler-DeWitt Operators

    Get PDF
    In the framework of loop quantum cosmology anomaly free quantizations of the Hamiltonian constraint for Bianchi class A, locally rotationally symmetric and isotropic models are given. Basic ideas of the construction in (non-symmetric) loop quantum gravity can be used, but there are also further inputs because the special structure of symmetric models has to be respected by operators. In particular, the basic building blocks of the homogeneous models are point holonomies rather than holonomies necessitating a new regularization procedure. In this respect, our construction is applicable also for other (non-homogeneous) symmetric models, e.g. the spherically symmetric one.Comment: 19 page

    A Path-integral for the Master Constraint of Loop Quantum Gravity

    Full text link
    In the present paper, we start from the canonical theory of loop quantum gravity and the master constraint programme. The physical inner product is expressed by using the group averaging technique for a single self-adjoint master constraint operator. By the standard technique of skeletonization and the coherent state path-integral, we derive a path-integral formula from the group averaging for the master constraint operator. Our derivation in the present paper suggests there exists a direct link connecting the canonical Loop quantum gravity with a path-integral quantization or a spin-foam model of General Relativity.Comment: 19 page

    Latticing quantum gravity

    Get PDF
    I discuss some aspects of a lattice approach to canonical quantum gravity in a connection formulation, discuss how it differs from the continuum construction, and compare the spectra of geometric operators - encoding information about components of the spatial metric - for some simple lattice quantum states.Comment: 7 pages, TeX, 1 figure (epsf); contribution to Santa Margherita Conference on Constrained Dynamics and Quantum Gravit
    corecore